Criteria and properties of the asperity peaks on 3D engineering surfaces

M. Kalin, A. Pogačnik

Wear 308 (2013) 95-104.


In any attempt to theoretically calculate the real contact area for 3D engineering surfaces, a criterion is needed to identify the relevant asperity-peaks that carry the load in tribological contacts. In our recent work, we investigated how different, available 2D criteria affect the properties of the theoretically determined asperity-peaks in 2D surfaces. In this work, however, we focused on a 3D surface characterisation. The effect of different asperity-peak identification criteria on the properties of the asperity-peaks (numbers, radii and heights) is studied in the 3D domain. Several different criteria that take into account the number of neighbouring points, the distances between them (lateral resolution) and their heights were evaluated for real measured surfaces with five different surface roughnesses in the broad engineering range of arithmetic surface roughness from Sa=0.005 µm to Sa=0.529 µm.

From the results it follows that all three chosen asperity-peak identification criteria (5PP-3D, 9PP-3D and 9PP-R-3D) result in reliable asperity-peak properties, and none of them can be favoured based on a theoretical evaluation only. There are, however, important differences between them. The data resolution in the x and y directions has a very important influence on the numbers, radii and heights of the asperity-peaks, and the results suggest that the data's lateral resolution, below 1 µm, should be used for the relevant asperity-peak identification.

Keywords: topografija površin, radii, surface topography, Surface topography; identification;3D asperity-peak;Radii;Real contact area


Izvoz bibliografije